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ABSTRACT

A discrete model suitable for the analysis of polycrystalline aggregate
response under macroscopically uniform, quasi-static loading is developed,
with particular emphasis on the characteristics of subsequent yield surfaces
in stress space. Internal stress and deformation states are determined from
approximating, piecewise linear infinitesimal displacement fields within
crystal grains, based upon broadly defined constitutive behavior which per-
mits inclusion of cubic or hexagonal crystal anisotropy and relatively general
hardening laws over crystallographic slip systems. Appropriate aggregate
matrices are established as symmetric, positive-definite, and internal fields

corresponding to the solution of the discrete model are proved to be unique.
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ERRATA

Correction

In (4.8) and (4.9), replace 80 and &c by 80* and Se*,
respectively. - N - -

In the fifth line following the subheading, aggregate
should be plural,

In (6.1), replace 6uM by 6GM.

In (6.3), replace 6€(q) by 6E(q).

The first line following (7.14) should read: 'The
approximate static..."

In (7.16), replace 6&)by su°,

In (A.4), replace Ny by N .
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1. INTRODUCTION

The first satisfactory theory for predicting the plastic deformation of
polycrystalline aggregates from phenomenological laws of single crystal behavior
was advanced by Sir. G. I. Taylcr [1l, 2]. 1In Taylor's now classic work, the
simplest possible kinematic model was adopted consistent with the concept of
a deformed continuum -- uniform strain throughout the crystal grains. This
theory was generalized by Bishop and Hill [3-5] to enable the approximate
calculation of macroscopic yield surfaces of pronounced yielding (neglecting
elastic behavior) and modified by Lin [6] to incorporate elastic strains.
Subsequent siudies were made by Payne, et. al. [7, 8]). Other theories and
models of interacting crystals, all utilizing isotropic elastic field solutions
in one form or another, have been proposed and/or investigated by Krdner [9],
Eudiansky and Wu [10), Hutchinson (11, 12), Hill [13), and Lin and his
associates [14-23), with the models of Lin, et. al., most nearly satisfying all
equilibrium and kinemaiic conditions in numerical evaluations.

In the present paper, a new discrete aggregate model suitable for predicting
the response of thin-walled, polycrystalline tubes is presented which incorpo-
rates certain features of previous models but is more general in several
important respects. Moreover, the model is closely related to theoretical
characteristics oi crystal and aggregate behavior established by Hill (24, 25].
The paper is organized as follows. In Section 2, a continuum mathematical
model of an aggregate of identical, polycrystalline "unit cubes" is introduced
and macroscopically uniform fields are defined. The aggregate virtual work
equation relating microscopic and macroscopic tensor variables then follows

as a direct consequence. Several different internal stress and infinitesimal
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strain fields are presented in Section 3, and an inequality is established which
leads to a proof in Section 4 of a macroscopic Bauschinger effect for the poly-
crystalline aggregate. In Section 5 a further specification of the continuum
model is given appropriate to the formulation of aggregate boundary value
problems. Sections 6 and 7 contain the general analysis of the discretized
model for prescribed aggregate macrostrain, based upon approximating, piecewise
linear infinitesimal displacement fields within crystal grains. Kinematic
conditions are met identically; equilibrium between grains is satisfied in an
average sense at each crystnllite node; and both anisotropic crystal elasticity
and fairly general crystal hardening matrices are included as constitutive
behavior. Aggregate matrices to be inverted (or decomposed) are established as
symmetric, positive-definite; and in Saction 8 a strict uniqueness proof is pre-
sented for both incremental plastic shears in crystallographic slip systems and
internel stress- and strain-incrament fields (as determined from the discrete
modal). Lastly, in Saction 9 the necessary steps for celculation of subsequent
yiald surfaces ere given and a suggestad model for quantitetive studies is

briafly discussad.

2. PRINCIPLE OF VIRTUAL WORK WITHIN THE POLYCRYSTALLINE AGGREGATE

Considar an erbitrary volume V of surfeca S within e polycrystalline metal
specimen. We denota any statically admissible strass fiald in V, corresponding
to & systam of salf-squilibreting tractions I. on S, by Q. (vith tensor com-
ponents ‘;j ) and any continuous, piscevisa diffaraniiabls infinitasixal dis-
placement fisld by 62°. A straightforvard application of Guuss' theoram then

yields

T A TR Pt S T



[ 6e%)av = [ 6u%)ds (2.1)
v L¥ sV v
wherein
§c° = D 6u° (2.2)
4" v "

locally within each crystal grain VM of V. (See the Appendix for definitions.)
To obtain an equivalent expression for the right-hand side of (2.1) in terms of
macroscopic stress and strain over the smallest possible volume sample, we

introduce the mathematical model of an aggregate of identical "unit cubes" and

define macroscopically uniform fields

= i
su’(Ah) = su°(A]) + ° (2.3)
n, 1 n, 1 N
1, & ia -
T(A) = - T(A) (2.4)
(respectively kinematically and statically admissible). AI denotes the unit
i

cube face corresponding to the positive coordinate axis x, and go is a constant
vector independent of position over A:. Macroscopic str.ss and incremental

strain are evaluated in a natural way as
* i
r~..o{ T, dA, (no summation) 2.5)

i b
o 1,0 o
6c 2 (cj + ¢ ) . (2.6)



Upon substitution of (2.3), (2.4) and (2.5) into (2.1), we find

fr*. 5u°)ds = o) 0 (2.7)
. Su = 0,. C, 5
S'\"" i3 7§
From considerations of moment equilibrium
i 3
f Thda, = [ T aa, . (2.8)
+ 41 4t
A A
i 3

Hence, the macroscopic stress tensor is symmetric and, from (2.6) and (2.7),

(2.1) can be written
* *
[ @ . 6%av =0, &° (2.9)
V 4" N n 4"

ith V now representing the unit volume of the polycrystalline cube. Further-

more, from (2.2), (2.3) and (2.6),

e = [ (8£%)av (2.10)
4" v 4"

and, from (2.4) and (2.5) and force equilibrium over any interior plane area

normal to a coordinate axis,
* *
o = [z av. (2.11)
"\ V'\a

Equations (2.10) and (2.11) are of course equivalent to (2.6) and (2.5), and

equation (2.9) (together with these definitions) is the well known virtual
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work equation for the polycrystalline aggregate. We merely remark here that

by mathematically defining states of homogeneous macrostrain and macrostress
(2.3, 2.4) the relationship (2.9) follows immediately and the various additional
arguments of Bishop and Hill (3], Kocks [26], and Hill [25] ure unnecessary.
Bishop and Hill's criterion, which can be written

i* i*
[ (T, suddda, = (f T, da,) [ (sud)da (2.12)
R Y/ £ 3% Yk’

1 i 1

for arbitrary i, j, k, is in fact distinctly different from (2.3, 2.4), and

neither condition implies the other. In addition, although the macroscopic

stress tensor 1s symmetric, equations (2.3) and (2.4) do not preclude the

existence of small macroscopic couple stresses (depending upon the distribution

of crystal orientations within the cube). These are determined as

i i

* *

mo=[(@xT )da, (2.13)

+'\: N

A

where r is the position vector to a point on the face AI .
n

3. SOME GENERAL INEQUALITIES AND INTERNAL FIELDS

(e)

Let ¢ denote the local stress field within a crystal grain determined by
n

assuming that the aggregate response to macrostress ¢ is wholly elastic. As in
n

[25], we take ;(e)
n

to be expressible in terms of o and a tensor (matrix) function
n

¥ of position within V (i.e., the influence of elastic inhomogeneity on the

ny

stress field):

s i e



(e) . (3.1)

2Q

Then, from (2.11)

[{

o= f®ay (3.2)
n v v
go that [ ¥ dV = £ (the identity matrix). We further define a microstress field

v’\a
rS(o) due to internal slip and self-stressing,
n

5 oo @ (3.3)
N n, n,
with (2.11 and 3.2)
[ $@qvao (3.4)
N n,

and introduce kinematically admissible, infinitesimal displacement and corres-

S(o) 65S(o)
? n,

ponding strain fields éu such that
N

se = ¢ 60® 4+ 50 (3.5)

v Voo v

C is the positive-definite, elastic compliance matrix of an individual grain
N

and é, § are the actual local stress and strain fields. We also have
N

8 = C 67 + eip (3.6)
n, n o on
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vwhere E 6& = Gie is the micro-elastic strain increment. The local micro-plastic

strain increment éep is determined from the incremental plastic shears Cyk on
n

the N slip systems of the crystal through the transformation
n, NN
with the resolved shear stress Ty in these slip systems evaluated as

“=NZ . (3.8)
LY

e~

The trarsformation matrix § is defined in terms of its kth row vector Ek in the
Appendix. (Opposite senses of slip in the same crystallographic slip system
are denoted by different k's so that éyk is always non-negative).

We nov introduce the following scalar averages over the unit cube:

- . &eP
dp { (ag 8¢")av

3.9)

u, * 5 (65 . f ci)dv

w = f (6@ csc®yav .
e v LV

(Note that (2.9) applies separately omly to wp and Ve since 65’ and s 6& are

not derivable from displacement fields, hence are not separately kinematically



admissible.) From (2.9), (3.4-3.6), and (3.9)

d' tu - 62 . 6: - vp tv (3.10)
Uy~ v, ° / (6;“")- C u“"’)dv > 0. (3.11)
v “~ “ Y

-9 ® $(0), 4¢P
d' v 5 (65 8¢7)av < 0 (3.12)
or (using 3.7 and 3.8)
/ (6:309) . 6y )dv < 0 (3.1))
v ~

from which wve conclude that the incremental shear siressse 61:“) due to slip

and eself-stressing oppose the incremental plastic shears "h 12 & majoricy
(1f oot all) of the active slip systems of the aggregats. This result will de
called upon in determining cerlain general characteristice of subsequent yield

surfaces in Sectiom &.

(e)

In eimilar manner to the adbove, we denote ( a9 the local strain field

“~

deteruined by sssuming elastic aggregate response to mecrostraina : and define

e function T of position within V such that
~>

(@ (3.14)

LI
. ~

[ 3
“~

and (2.10)



9
c-lc“’av . Jreaver . (3.19)
~ v v ~ -
Introducing kinemstically adaiseible, infinitesimal displacement snd
corresponding etrain fields 625(‘). ass“) due to internal elip and self-
straining,
TR AR N Tol (3.16)
“~ ~
and o related stress field s“‘).
S ol (@ (3.17)
- ~ - hY
fe3Cvan , (3.18)
v © M
and
3OO eo-(fctran . ¢ . (3.19)
v ~ v » ~ N
The inverse elas:ic complience matrix of the aggregate odviously {le
-1 - -1
Shcto {S I A (3.20)
Ve also have, from (3.1) and (3.95),
Jo*@ave e - (fcyan . s (3.21)
v ° " v >N ~
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so that the aggregate compliancs matrix can be altsmately expressed

Cacro " 5 f : v . (3.22)

From (3.19-3.22), (epparent) macroscopic plastic strain and "plastic stress'

increments ere appropriately defined as

6P e [ 6¢5@qv e 5c - [ c6(® av (3.23)
~ v‘\: A v'\v'\v

6P = - [ 650y « [ Iy GC(')dV - 6o . (3.24)
~ v'\a

(For clarity, these verious tsrms ars interprsted for the uniaxial case in
Figure 1.) Lastly, we rslats ths internal stress fislds gS(a) and gs(e) from

3.3), (3.14), (3.17) and (3.22):

cS(a) - cS(c)
n n

T(‘ ~ Stacro 9 (3.25)

4. CENERAL CHARACTERISTICS OF SUBSEQUENT YIELD SURFACES
Hill's proof [25) of gsnsralizsd normality for aggregates satisfying (2.9)

is based upon postulated conditions which are equivalent to the requirement

k
Grcr 6yk > 0 (4.1)

(1.e., crystal grains strain harden in activs systems, with TEr denoting the

critical shear stress in ths kth crystallographic slip system). The final
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form of Hill's equation [25] can be written
<0 (4.2)

in which Gg, 65 are macro-stress and related strain increments which produce
* *
slip in one or more slip systems while &¢ , 6: correspond to purely elastic
A
* *
response of the aggregate (with 65 = EMacro Gg ). Thus, we have the following

orthogonality conditions for the quantities defined in (3.23) and (3.24):

*
6 .asl’io (4.3)
* P ;
se . 8P <0 . {4.4)

According to (4.3), the domain of all possible incremental plastic strain vectors
Gsp from a stress point g in macrostress space is orthogonal to the domain of

all stress increments GS* producing purely elastic response (i.e., directed into
the elastic region in stress space). According to (4.4), the domain of all
possible incremental "plastic stress" vectors Ggp from a strain point £ in
macrostrain space i{s orthogonal to the domain of all strain increments 6&*
producing purely elastic response (i.e., directed into the elastic region in
strain space). The first of these interpretations is, of course, compatible
with the customary manner of describing yield surfaces and is physically more
appealing since sp is the strain remaining upon mechanical unloading to zero

stress (if the present yield surface encloses the origin of macrostress space).
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A particular yield hyperplane in stress space is defined as (3.1, 3.3 and

3.8)

+ 1 -1 =0 (4.5)

with the corresponding hyperplane in strain space given by (3.8, 3.14 and 3.17)

n ol S(e) _ k
8 ?jk s 2 : + T Ter 0 . (4.6)
S(o) S(e)

The shear stresses T and T are related through (3.8) and (3.25):

k

TIS‘(U) - Tlsg(E) + 'ng s"l I (i = SMacro g) c 4.7)

* *
Admissible stress and strain increments §¢ , 65 corresponding to unloading from
n

all potentially active systems must satisfy

N ¥6g <0 (4.8)

and
_1 9
Hk S 2 Gg < 0 (4.9)

which are equivalent statements since, from (3.1), (3.14) and (3.22)

S x - E EMacro * (4.10)
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In stress space the local elastic region lies within the pyramid of imnmer

bounding hyperplanes fk vhose unit normal vectors ere

B oo (L Yl Ll (4.11)

The distance to the kth hyperplane is (4.5 and 4.11)

o
- (X _ .5()

D= G =ty MK Yl (4.12)

vhich for isotropic aggregates simplifies to (see Appendix)

[+]
- k _ S()
D, /z_(x" e ) (4.13)

Consider nowv the change in position of an active plane vith incresaing pleatic
deformation. Since k corresponds to the active sense of slip in a particular

crystallographic system, wve redefine it as (k¢) and write

c
(k) $(c)
60(&#) ® “'cr = hk )/“& b I (4.14)
From (3.13)
[ Qe apav o . (4.19)
VvV k

As this inequality must hold locally for the majority of active systems, we

can assume it holds for the particular k of interest. Thus
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$(o)

X 8y, <« O (4.16)

8t k

end (4.1 and 4.16)

Dine) * “'::ﬂ < IG':“)I)/II&: N> o . (4.17)

Similarly, the distence (in the opposite direction in stress spacs) to the
parallel hyperplane corresponding to the negstive sense of slip (k-) in this

crystallographic systea {s

o
o (=) . 8(0)
Doy ® C(tee  * % MINK 2l (4.18)
and its changs e
o
-y ® (6'2 ) - |6':(°’l)lll LA (4.19)

Thus, 1f the change in crystal hardening Gi::-) in reverse slip ie less than

the change in the resolved shear stress dus to internal slip and self-stressing,
o
cn“_) < 0 and the two hyperplanes move in the same direction. This s

certainly the case vhen the crystal strein-softens in reverse slip (as fe

suggested by the experimental vork of Psterson [27) on copper), and there will
be a corresponding strong Bauschinger effect in macroetress space. There will
be at least s weak Bauschinger effect if only Gt::-) < ér:?) . heace 6;“_) <

]
&0 Introducing the generalized Schaid-Taylor law [24, 28)

(x+)’

6‘:\“ - !(1) 61 (4.20)
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(ia vhich g(z) is the crystal hardening matrix), this inequality is met for both
Taylor hardening (1, 29) ¢nd the translational hardening adoptad by Budiansky

and W [10) and Tung and Lin [19]), as well as for any posit’ve combination [30)
Heh(pDl + c(ON N . (4.21)

({ is an N by K matrix all of vhose alaments are unity and h and ¢ are scaler
hardening functions dctarmined from singls crystal tests.) In addition, g of
(4.21) s ac least positive semi-definits (M:0), and if c o, E>Oovcr active
systems (24, 30). The property Q;o vill he of importance in astablishing

uniqueness of solution for the discrete wodal in Section 8.

5. SELECTION OF MODEL FOR POLYCRYSTALLINE AGGREGATE ANALYSIS

1f ve wers to consider only (idaalizad) alastically isotropic crystals in
defining an aggregats boundary value problem, slastic fisld solutions for
point body forcas could be introducad (as in [17-18, 20)), thus permitting both
non-uniforms microstress and displacement fields over unit cube facas Ai vhile
still satisfying the virtusl work squation (2.9). To considar aggregate of
anisotropic crystals, hovever, (thsreby enabling investigation of the effects
of texturing on macroscopic yiald surfaces, for example), it is almost mandatory
that a modal vith aithsr uniform tractions or (at most) linearly varying
displacements over the fecss Ai be adopted. The latter is chosen herein as
the prefarred approximation on the basis of tha following argument.

Consider a thin-walled tube subjected to, say, axial load and internal

pressure. The wall thickness of specimens studied sxperimentally in combined
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stress tests is often in the range 1-2 mm, with from 10-30 grains through the
thickness (see [31]) and [32]). Thus, as an idealization of the physical
situation, we assume a thickness of 1 mm and define a unit cube V = 1 mm3
containing on the order 1000 crystal grains in the corresponding 'flat sheet"
representation (i.e., a macroscopic plane stress problem). Then the longitud-
inal feces (Figure 2) become planes of symmetry in our model of identically
deforming cubes. We further assume the distribution of crystal orientations
to be symmetric with respect to transverse planes. Hence, (2.3) and (2.4)
are setisfied, with the displacements either constant or (for other combined
loadings) linearly varying over the appropriate faces. If uniform tractions
had been imposed over the cube, the transverse and longitudinal faces would no
longer be planes of symmetry and adjacent cubes could not deform identically.
Thus, we select as a model for analysis a unit cube (of generally anisotropic

crystals) on each of whose faces A, either infiniiLesimal displacements are

i
prescribed. to give the appropriate macroscopic strain increment (through 2.6),

or trections ere zero (free face).

6. DISCRETIZATION OF BOUNDARY VALUE PROBLEMS OF PRESCRIBED AGGREGATE

MACROSTRAIN

To discretize the above-defined aggregate model, we introduce a
kinematicelly admissible, approximating infinitesimal displacement field which
is continuous throughout the eggregate and piecewise linear within each crystal
grain. Correspondingly, a crystel sub-volume with constant microstrain field
is represented by a tetrahedral element, herein called a crystallite, with
nodal points I, J, K, L (Figure 3). The infinitesimal displacement 55(:)

within the crystallite q is reedily expressed in terms of the nodal
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displacements GGM as (see [33], for example)
N
- M
Su(x) = M%q) by(x) 6 (6.1)
wherein
Oy (X)) = o + Bijj (6.2)

J
with the general expressions for Gyrs BMJ in terms of nodal coordinates Xy given

in the Appendix. From (2.2), the local strain field is

8 = ] M =M
@) by By (6.3)
in which
M T
sq = E ¢M(¥) o (6.4)
Then, from (2.10),
‘); 6 dv = g 88 @) Yq = %8 (6.5)

exactly if the infinitesimal nodal displacements on the faces Ai of the unit
cube are prescribed consistent with (2.3) and (2.6). Denoting incremental
tractions on the crystallite faces by 65 , the virtual work equation for the

element is (from 2.1)

=M
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/ 55 . 8f av - | ci . cE ds = 0 (6.6)

v S
q q

so that, from (6.3) and (6.4), the element equilibrium equation can be expressed

) (gg)T [ szave [ [ o, 6tds . (6.7)

N
M(q) Vq M(q) Sq

Since an approximating displacement field has been adopted, tractions cannot
be matched exactly between adjacent crystals. Rather, we introduce from (6.7)

the equivalent nodal force increments

J -
cg(q) é ¢, 6t ds (6.8)
q
and require that
§F) =0 (6.9)

iy @ T A

over the q elements having the common node J. Equilibrium between crystallites
is then satisfied in an average sense, and the discontinuous microstress field
65 through the aggregate is only approximately statically admissible. Hence,
Jefining macroscopic stress according to (2.11), the aggregate virtual work
equation (2.9) will not be exactly satisfied, and a measure of the

discretization error is (from 6.5)

= [ 867 + 8 @V - zdv) . 6 6.10
e é g 65 d (é GE dv) £ ( )

which can be written
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¢ = E 65(q) . 65(q) vq - (E 63(4) va) . b, (6.11)

Upon substitution of (6.7) and (6.8) into (6.9), the nodal equilibrium equation

becomes

. (8,) / 6§ v =0 . (6.12)

Since our boundary value problea is one of prescribed macrostrein, ve seperate
the stress field as in (3.17) and vrite (using 6.3 and 6.4 and deleting the
superscript (c) for simplicity)

-1 M -(e)M -
Ca) H%q) su vq + 5 80 av 6.13)

q q
wherein g(q) is the crystal compliance matrix referred to the unit cube exes
and 65(.) is the (kinematically edmissible) infinitesimal displacement field
deterrmined by assuming elestic eggregete response to §¢. Substituting (6.13)
into (6.12), the nodel equilibrium equation is seperable into two equations

by definition of the f1e1d 63(®:

J.T =1 Mo =(e)M .
qu) (gq) @ "gq) g, %Y Ve 0 (6.14)
J.T -
v . [ 2 [ ]
o5 (Qq) 5, 6¢° dv = 0 6.19%)

Assembling the first of these equations into e genersl matrix equilibrium
equation for the overall vector 6§(.) ® (eoe, 6§(.)", ...)¥ of elestic nodal

displacements and noting thet
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-1, -l
f) ° % fe &) (6.16)

(vhere gc is the crystal compliance matrix referred to the crystal axes and

Q“) is ¢ transformstion matrix given ‘a the Appendix), wve have
M v of (6.17)

ia wvhich el] crystallites have been chosea of equal volume Vc << ] for
convenience in subsequent analysis. (This is eesily realized geometrically
since ¢ cubic volume can be separeted into six equal volume tetrahedrons, and
the unit cube can be divided into as many sub-cubes as desired.) The matrix )

1s composed of 6 by 3} elements !q.l defined as

dofs * d(qyf'®y 11 310 @ node of (@)

Q 1f J 1s not & node of (q) .

The matrix ! ia & diagonal matrix of positive-definite submatrices g:l H

s-le) - (6.19)

The overall matrix !r’. P 1s positive-semidefinite since a piecevise lineer
displacement field adaits infinitesimal rigid body motion with no change in
strain energy. In terms of the unknown interior displacements ée") and the

prescribed exterior dieplacesents 6Q° o (6.17) can be vritten
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(@ , 4 65"’ .- !I £, Y, ag° (6.20)

BSR Y, b

vherein !‘ is obtained {rom ! by deleting sll vector columms corresponding to
exterior nodes J°. The matrix !o is similarly determined by deleting all vector
columns corresponding to interior nodes J. The aggregate elastic "stiffness”
satrix [ 3 fis sysmetric and positive-definite, an arbitrary rigid body motion

ia the solution having been eliminated by prescribing 6Q° on the surface of the

(e)

uait cube. Thus, the taternal scratn f1e1d 60" = PTeg'®) 1o dotermined oo

=(e) | od

skq "(q)@ gq by, - !q g B Y. o ) (6.21)

in vhich (;l denotes & rov vector of ) by ) submatrices of Q'l and the separate

contridbutions of iaterior and exterior nodes of (Q) are as indicated. The over-

all vector of infinictesinal strains 6&" ® (... 6‘::; a ...)r can be expressed

(e)

1 SN S ¢ I T HE T R HE T (6.22)

vherein { is an identity matrix and Q‘ is a disgonal matrix of elements Q:‘).
7. GEXERAL SOLUTION FOR INCREMENTAL CRYSTAL SHEARS
From (3.6), (3.7), (3.16) and (3.17)

f 43S v o o) -8 _ T -
: 8 dv Q(q) 5 (s 5(q) &y) @v (7.1)
q q

or, using (6.)3),
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e gy - o M ,=(SM , _ o1 T > -
v 8 f "Eq) " Yt 1:‘(q){, by d 7.2)

q q
in vhich 635 is the previously defined (Section 3) infinitesimal displacement
\
field due to internal slip and self-straining (i.e., Ggs - ?T AQS). Thus,

substituting into the second nodal equilibrium equation (6.15),

J,. T -1 ¢ M . =(S)M < J. T -1 T r=
) 3 v (87) Iosy av . (7.3)

q?J) Qq G(q) M?q) Qq ¢ q qu) \q G(q) v(q) vq L
Since, from (3.18), GQ(S)"O : Q for exterior nodes on the cube faces, we have

(proceeding as before)

T S T T .-
?1 3 Q‘ Vc §° = Q‘ S N &y Vc (7.4)

S, -(S)M T =, - T
in vhich ée {looor 69 n coo & ¢ 61 (eoey 6{(q)' ess) , and

™ T <
N Mt = M el

vhare Qc is the transformation matrix from the local crystal axes to the

crystallographic slip systems. Hence
S -1 .T T ,-
87 e KT B SH Sr Y (7.6)

-1 T . T .=
Ry B SN &Y v . (7.7)
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Upon substitution of (7.7) into (7.2), the internal stress field due to
crystal slip and self-straining becomes
-S -1 ° M _~-1_T T - -1 T -
= N - . .
@ 7@ yh, BB BT % S Y e 0 )
=S -S T
Thus, the overall vector of incremental stresses 6{ 2 (.04 ég(q), ees) can
be expressed (from 6.18, 7.4, 7.5 and 7.8)
=S T T -1 _T T .-
8L = A" [ -3 By By S By "By RIN & (7.9
with
T Al | (7.10)
& ~v(q) ’
as previously defined. Then, from (3.8), (7.5), and (7.9-7.10), the overall
vector of incremental shear stresses é?s = (cee, éiiq)' +eo) due to internal
4V
slip is given in terms of the vector of infinitesimal crystal shears by
-S T .- S ;-
§1° = - Sy = - 8 7.11
T NQN 6y =-F & (7.11)
wherein
T -1 T
Q=S IL-R By RRY BRI - (7.12)

The symmetric matrix gs =N Q §T will be called the self-straining matrix. In

Section 8 it is proved that this matrix is positive-definite over critical

=
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(potentially active) slip systems, hence it has a unique dscomposition (or
inverse).
Substituting (7.9) and (6.22) into (6.13) (or 3.17) and denoting 6% -

{ooog 6é(q), ...)T. ws have
6T = A % UL~ BBy 8RR IR, 68 - AT &) (7.13)
or (from 7.12)
6% = AT q 8, oy° - N &) - (7.18)

The appropriate static admissibility of this strsss field for arbitrary surfacs
displacemsnts and intesrnal shsars is, of course, confirmed by substitution of
(7.14) into ths nodal equilibrium equations (6.12), exprsssed in general matrix

form, whsnce

BASE R QIR g - N o) =g (7.18)

since g} Q z Q from (7.12). (The influence matrix Q is analogous to the

integrodifferential opsrators on 6£p(§) in [20) and ([34).) Ths ovsrall vsctor
N

63 D {ooop 6i(q)' ...)T of incremental rssolvsd shsar strsssss in the various

crystallographic slip systems within the cubs is (3.8, 7.5, 7.10 and 7.14)

- o ‘r-
6: =N Q [po 68" - N 611 . (7.16)
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Therefore, the equation for the incremsatal stress in the kth critical slip

systea of crystallite (q) becomss

6;Ix(q) ° !: E:l "é‘) e(‘)(e:° ‘?:o - Q: E;l !I %‘!04¥°

o HCURARE MY S L PR R T
For an active systes,

(q) -
) B (1q)%1(q) (1-18)

vith the hardening matrix of the crystallite depending only upon the local

plastic deformation (!k denoting the kth row vector). Thus, from (7.17) and

(.18)

LNCARE N Ql‘¥c’r’°i(q) -6 "g‘ (q) Qq e R & 0

- 92 "( , Q(q)(‘f 8 g: 5‘" !I sV B o) (7.19)

in vhich the only unknowns are the incresental shears é;k(‘) in the various
active slip systems. Vriting the equality (7.18) for all the active systems,

equations (7.19) can be expressed in general metrix form as

UREN R HEALE N RUCAL 1.20)
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vherein !“ is a diagonal matrix vhose slements are the individual crystallite
hardening matrices. The subscript A denotes the reapective vector or satrix
reduced to include only those crystallites (q) containing one or more sctive

critical systems. The symmetric matrix

T
LA PR A (2.21)

is positive-definite for all crystal hardening matrices of typ. (4.21), as proved

in the folloving section, and (7.20) (or 7.19) yields & unique solution for °ia'

8. UNIQUENESS OF INTERMAL FIZLDS IN THE DISCRETIZED AGGREGCATE MODEL

From (6.16), (6.19) and (7.10), the overell vector of infinitesinmal elastic

strains 6? ® (eoe,y Q“)GZ“). LT
o - Nty (3, &° - g’cil . (8.1)

Reintroducing the scalar everage ., of (3.9), we wvrite

- - e =0
u, * E °£(q) . E(g)‘i(q) V.etd.eE Vv 0. (8.2)
Hence, from (7.14) and (8.1),

Se = @, 0 - NPT, 8° - WD v > 0 . (8.3)

Assume nov two distinct sets of internal fields cg“). cg“). 6i“) and
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8 . 6L .. 87, .. both of vhich satisfy all r1 tons of
Q(q)' ‘(q)' Z(q)' th o ch satisfy appropriate equations o
the diecretized model for an infinicesimal macrostrain §c (i.e., uniquely
~
° - - -.
prescrided 6J°). Denoting their differences b’<<§§(qi;> 6€(q) éé(q).

etc., then from the sdove
<6 ygr'<e>0 . (8.4)

This equation is written only over potentially active slip systems corresponding
to the curreat states of internal stress and strein, since the sctive systems
for either set of incremental shears vill belong to this criticel group.
Therefore, ts N QT is positive definite over critical systems; consequently,
it {s also positive definite over sctive systems (ti > 0). WUe slso find,

from (3.7), (7.5), and {7.14),
] <88y <hqr> + <61 NN <g;>-0. (8.5)
q

Introducing an inequality due to Hill [24) wvritten over critical systems of &

crystal grain,
<Ly - <R 2 <O o F By <> (8.6)
<(q) Q@ - 2 (qQ) Q) ~(q)
and substituting into (8.5), we have

0> <&§F My, d<ei>+ <qgF pen'<a>. @n

2
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From (8.4) the second term is positive, and for H > 0 (as in 4.21) the first
tera is non-negative. Hence, the inequality is violated for non-zero <6£>,
from which we conclude thst the incremental sheers are unique. It follows
from (7.14) that the incremental stress field is unique. Consequently, the
infinitesimal total strain field is elso unique, and the proof is complete.
The matrix KA of (7.21) is obviously positive-definite from (8.4) and the
above.

A final comment is necessary pertaining to determination of the unique
aggregate response from e perticular deformed state, since an admissible
solution of (7.20) is constrained by the physical rsquirement G;k > 0 for all
k (wvhich is implicit in 8.6). If, for example, (7.20) is solved for 62 based
upon the expectation that all critical slip systems will be active in a
msacrostrain increment 65 , certain of the G;R(q) may be calculated as
negative. In this event (7.20) must again be solved, after eliminating the

appropriate slip systems, until all incremental plastic shears are positive.

9. REMARKS ON QUANTITATIVE MODELS AND THE CALCULATION OF AGGREGATE
YIELD SURFACES

At a particular stage of aggregate straining, e subsequent yield surface

is obtained by determining the positions of yield hyperplanes in stress

space, as follows. Consider the case of applied biaxial strain [ (eu,ezz)T

corresponding o the biaxial macrostress state é - (511,;22)T discussed in
Section 5. From the elastic solution of (6.21) (or 6.22) we define, according
to (3.14),

@ "t & @.1)

o £ e o e o A bl o = e
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in which z(q) is a 6 by 2 matrix whose columns are determined from separate
evaluations of (6.21) for the states (511.522 = 0) and (511 =0, 522) respec-

tively. Hence, from (3.20)

-1
- -] =
.SM‘cro - g g(q) I(q) Vc ’ (9-2)

a 2 by 2 matrix (using only the first two rows of each . ). Adopting the
(q)

volume average definition of macroscopic stress (2.11), we have
v ] (9- 3)

where again only the two leading elements are chosen. Introducing the

$(9) 44 the residual micro-

notation gR for gs(o) (since from (3.1) and (3.3) ¢
A
stress field remaining in the aggregate upon unloading to zero macrostress),

then, from (4.7), (6.16) and (7.5),

=R -S c ~1 = - -
@ - k@ T &% A I(q§£- Svacro £ ) (9.4)
wherein ;:(q) is the sum of increments 6?:(q) determined from (7.11) over the

strain history and éMncro and o are as calculated above. The distance to the
A

kth hyperplane in macrostress space then is determined from (4.12) as

¢ <k(q) _ =R

De) = Cer ™ k(@) k) Yoy | (9.5)

in which, from (4.10), (6.16) and (7.5)
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= c -1 = -
ﬂk(ﬂ) X(Q) = N £ é(q) x(q) fMacro : (9.6)

The direction, as given by (4.11), remains fixed. The elastic domain is the
inner bound of all such hyperplanes in 511, 322 space.

A quantitative model which should prove suitable for such evaluations
(corresponding to thin-walled tubes) is an aggregate cube of 1296 crystallites
arranged within 216 sub-cubic volumes. From the symmetry conditions of
Section 5, the discrete boundary value problem can ve reduced to a consideration
of 324 crystallites with 112 distinct interior and exterior nodes and 223 unknown
nodal displacements. The symmetric, positive-definite matrix 5 is then of order
223 with a half-band width of approximately 43. Thus, its accurate inversion is
& relatively modest task for a triangular decomposition routine. Concerning
the solution of (7.20) for incremental shears, the order of EA should be small
(less than 100) during the early stages of aggregate straining as only a
relatively few slip systems will be critical. With increasing plastic deforma-
tion, numerical studies could feasibly be continued until several systems
become active within each of the majority of the crystallites,at which stage
the order of EA would still be less than 1000. A digital computer program
for studying the quantitative effects of aggregate texturing, crystal structure
and anisotropy, and crystal hardening laws on theoretical macroscopic response
is in preparation, with numerical results to he presented in subsequent

papers.
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APPENDIX

Internal stress and infinitesimal strain tensors are expressed in vector

form as

IR G Y2 8100 72 8150 4590 V2 5yqs c”)'r (A.1)

T
65 = (85, /Tct;u. /_2_6513. 86,590 /2_6523. 8644) (A.2)

from which the equilibrium and kinematic equations can be written 2 g- Q

T - T
and 2 65 8y = (6u1. 6u2. 6u3) , with
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1 1
Y A Y gAY 0 0 0
1
0 0 A 0 2, é- 3, 0 (A.3)
1 1
0 0 /2- 31 0 /2- 32 33

(vherein 3‘ denotes partial differentiation vith respect to the corresponding

spatial coordinate).
The kth row vsctor of the crystal transformation matrix ) is given in

terms of unit vectors t 5 k in the normal and glide directions, respectively,

of the kth crystallographic slip system:

1
k. k k k

k, k
02 2. /'(o +¢3A2).¢33) (A.4)
Consequently
4+ 2
g =y 1 =72 . (A.5)

For the tetrahsdral crystallite (Figure 3),the configuration paramaters
Gye aHj are determinsd as (introducing the permutation tensor cijk and

summing on repeated indices)
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and

1 M
BHJ 6Vq (cofactor)J

€ XJX‘L
19k *1 %3 %
€ XKXIL
13k *1 %9 %
IR I
19k *1 %3 %
. S
19k *1 %3 %

1 1

1 X, x2

J J

1 x1 x2

K K

1 X, X,

L L

1 x, x,

vhere 6Vq is the determinant of the matrix.
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(A.6)

(A.7)

] o) o ]
WHWRWL W

The transformation matrix Q(q) relating the stress or infinitesimal strain

components referred to the unit cube axes with those referred to the crystal

axes (Figure 3) is

2
11 2 51%12
2 a8, a8t 00,
2 ajay  ajagte 0y
2
1 2 %21%22
/2 aj8y) 8y a5te558,
2
L %*n /2 ay)34

2
2 21%13 82
11%23%13%1 "2 a5y,
8118554858 V2 8)58,,
2
2 %2123 82
8))835%0)38y 2 85585,
2
2 831433 832

(A.8)

2
2 22%3 %13
8),8,5%8)48); V2 a)58,,
8)7833%8 383, 2 8)584,
2
2 822923 823
8)3835%8y585, 72 8)58,,
2
3 232%33 833
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]
in which a,, = cos (xi, x,). Thus

13 3

S " 2@i@ * %@ " 4@ @ (A.9)
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Fig. 3 Tetrahedral Crystailite Showing Orientation
of Crystal Axes ond kth Slip System
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